
Haka MQTT Documentation
Release 0.3.5

Keegan Callin

Feb 13, 2019

Contents:

1 Status 3

2 Installation 5

3 Project Infrastructure 7

4 Table of Contents 9
4.1 User Guide . 9
4.2 API Reference . 29
4.3 Change Log . 43
4.4 Developer Guide . 46
4.5 Distributing haka-mqtt . 48

5 Indices and tables 53

Python Module Index 55

i

ii

Haka MQTT Documentation, Release 0.3.5

The haka_mqtt package is reliable “weapons grade” MQTT client library. It contains a core mqtt reactor class built
with provable reliability, and reproducibility as its fundamental goals. It turns out that it is sufficiently speedy as well;
there has never been a performance complaint lodged.

Contents: 1

Haka MQTT Documentation, Release 0.3.5

2 Contents:

CHAPTER 1

Status

The project’s core reactor is stable. It has been tested on systems with thousands of distributed nodes in difficult field
conditions. The QoS=1 datapath is well field tested. The QoS=0 and QoS=2 are not as thoroughly field tested.

While the core reactor is very well tested the frontends are less tested. You should pay attention to notes on the
different frontends regarding their status and use.

The haka library is mostly tested on Linux derivatives. It may work on other platforms but this has not been tested by
the authors and no definite reports of success have been reported to the authors.

3

Haka MQTT Documentation, Release 0.3.5

4 Chapter 1. Status

CHAPTER 2

Installation

The haka-mqtt package is distributed through pypi.org and can be installed with the standard Python package manager
pip:

$ pip install haka-mqtt

If you do not have pip then the package can be downloaded from haka-mqtt and installed with the standard setup.py
method:

$ python setup.py install

5

https://pypi.org
https://pip.pypa.io/en/stable/
https://pypi.org/project/haka-mqtt

Haka MQTT Documentation, Release 0.3.5

6 Chapter 2. Installation

CHAPTER 3

Project Infrastructure

The project is coordinated through public infrastructure available at several places:

• Releases (pypi)

• Documentation (readthedocs.io)

• Bug Tracker (github)

• Code Repository (github)

7

https://pypi.org/project/haka-mqtt
https://haka-mqtt.readthedocs.io/en/latest/
https://github.com/kcallin/haka-mqtt/issues
https://github.com/kcallin/haka-mqtt

Haka MQTT Documentation, Release 0.3.5

8 Chapter 3. Project Infrastructure

CHAPTER 4

Table of Contents

4.1 User Guide

The haka_mqtt package is reliable “weapons grade” MQTT client library. It contains a core mqtt reactor class built
with provable reliability, and reproducibility as its fundamental goals. A side effect is that the library turns out to be
speedy as well.

The core reactor takes some time to plumb into an application event loop. To make life easier for simple use cases
haka-mqtt includes a number of front-ends that speed implementation by making some reasonable assumptions. If
these assumptions do not hold for application then it best to use the core reactor directly.

4.1.1 Quickstart

Installation through pip is supported:

pip install haka-mqtt

A basic mqtt client is short and sweet:

"""Basic client that connects to test.mosquitto.org, subscribes
to a topic, publishes to that topic, awaits notification of
publish on that topic, then cleanly disconnects."""

Standard python Packages
import logging

3rd-Party Packages
from haka_mqtt.frontends.poll import (

MqttPollClientProperties,
BlockingMqttClient

)
from haka_mqtt.reactor import ACTIVE_STATES
from mqtt_codec.packet import MqttTopic

(continues on next page)

9

Haka MQTT Documentation, Release 0.3.5

(continued from previous page)

LOG_FMT='%(asctime)s %(name)s %(levelname)s %(message)s'
logging.basicConfig(format=LOG_FMT, level=logging.INFO)

properties = MqttPollClientProperties()
properties.host = 'test.mosquitto.org'
properties.port = 1883
properties.ssl = False

TOPIC = 'haka'

c = BlockingMqttClient(properties)
c.start()
sub_ticket = c.subscribe([MqttTopic(TOPIC, 1)])
c.on_suback = lambda c, suback: c.publish(TOPIC, 'payload', 1)
c.on_publish = lambda c, publish: c.stop()

while c.is_active():
c.poll(5.)

Typical output of this program is shown:

2018-11-05 22:30:41,655 haka INFO Starting.
2018-11-05 22:30:41,655 haka INFO Looking up host test.mosquitto.org:1883.
2018-11-05 22:30:41,798 haka INFO Found family=inet sock=sock_stream proto=tcp
→˓addr=37.187.106.16:1883 (chosen)
2018-11-05 22:30:41,798 haka INFO Found family=inet6 sock=sock_stream proto=tcp
→˓addr=2001:41d0:a:3a10::1:1883
2018-11-05 22:30:41,798 haka INFO Connecting.
2018-11-05 22:30:41,798 haka INFO Connected.
2018-11-05 22:30:41,932 haka INFO Launching message MqttConnect(client_id='bobby',
→˓clean_session=True, keep_alive=0s, username=***, password=***, will=None).
2018-11-05 22:30:41,933 haka INFO Launching message MqttSubscribe(packet_id=0,
→˓topics=[Topic('haka', max_qos=1)]).
2018-11-05 22:30:42,068 haka INFO Received MqttConnack(session_present=False, return_
→˓code=<ConnackResult.accepted: 0>).
2018-11-05 22:30:42,225 haka INFO Received MqttSuback(packet_id=0, results=[
→˓<SubscribeResult.qos1: 1>]).
2018-11-05 22:30:42,225 haka INFO Launching message MqttPublish(packet_id=1, topic=
→˓'haka', payload=0x7061796c6f6164, dupe=False, qos=1, retain=False).
2018-11-05 22:30:42,376 haka INFO Received MqttPuback(packet_id=1).
2018-11-05 22:30:42,552 haka INFO Received MqttPublish(packet_id=1, topic=u'haka',
→˓payload=0x7061796c6f6164, dupe=False, qos=1, retain=False).
2018-11-05 22:30:42,552 haka INFO Stopping.
2018-11-05 22:30:42,552 haka INFO Launching message MqttDisconnect().
2018-11-05 22:30:42,552 haka INFO Shutting down outgoing stream.
2018-11-05 22:30:42,686 haka INFO Remote has gracefully closed remote->local writes;
→˓Stopped.

4.1.2 Core Reactor

The core MQTT Reactor is the backend behind all event loops. It is built to be used with blocking sockets or with
non-blocking sockets. It does not itself integrate with any event loop and it is the different frontends that match the
reactor with event loops and whatever special rule processing is required for the given application.

10 Chapter 4. Table of Contents

Haka MQTT Documentation, Release 0.3.5

Reactor Lifecycle

A reactor has active and inactive states. While in an inactive state no sockets are active, no DNS calls are active, and
no tasks are scheduled. Any of these may be true in an active state.

The normal reactor lifecycle is summarized in this state diagram:

init starting
start stopped

errorerr

started

err

stoppingstop

err

Start

Calls to haka_mqtt.reactor.Reactor.start() can be used to activate an inactive reactor otherwise they
have no effect.

init starting
start stopped

start

error

start

start

started

start

stoppingstop

start

Stop

Calls to haka_mqtt.reactor.Reactor.stop() may be used to at the earliest possible opportunity cleanly
disconnect from a server.

4.1. User Guide 11

Haka MQTT Documentation, Release 0.3.5

init startingstart

stopped

stop

error

stop

started
stopping

stop

stop

stop

Subscribe/Unsubscribe

Subscribe/unsubscribe calls made before a call to haka_mqtt.reactor.Reactor.stop() will have their as-
sociated packets delivered before the socket outgoing write channel is closed. Whether the packets are acknowledged
on not depends on server implementation.

Publish

Calls made to publish before a call to haka_mqtt.reactor.Reactor.stop() will have the associated packets
delivered before the socket’s outgoing write channel is closed. The server may or may not acknowledge QoS=1
publishes before closing the socket. QoS=2 packets may be acknowledge with a pubrec packet but the reactor will
not acknowledge the pubrec packet with a pubrel since the outgoing socket stream would already have been
closed. Any pubrel packets qeued before the call to stop will be delivered before the outgoing write channel is
closed and may or may not be acknowledged by the server with a pubcomp.

Terminate

A haka_mqtt.reactor.Reactor.terminate() call prompty closes all haka-mqtt reactor resources and
places the reactor into a stopped state. All schedule deadlines are promptly cancelled. All socket resources
are promptly closed. Any asynchronous hostname lookups are cancelled. “Prompt” in this case means before the
terminate call returns.

12 Chapter 4. Table of Contents

Haka MQTT Documentation, Release 0.3.5

init

stopped

terminate

starting

start

error

terminate

terminate

started

terminate

stopping

stop

terminate

Send Path

QoS 0

4.1. User Guide 13

Haka MQTT Documentation, Release 0.3.5

QoS 1

14 Chapter 4. Table of Contents

Haka MQTT Documentation, Release 0.3.5

QoS 1 w/Disconnect

4.1. User Guide 15

Haka MQTT Documentation, Release 0.3.5

QoS 2

16 Chapter 4. Table of Contents

Haka MQTT Documentation, Release 0.3.5

QoS 2 w/Publish Disconnect

4.1. User Guide 17

Haka MQTT Documentation, Release 0.3.5

QoS 2 w/Pubrel Disconnect

18 Chapter 4. Table of Contents

Haka MQTT Documentation, Release 0.3.5

Receive Path

QoS 0

4.1. User Guide 19

Haka MQTT Documentation, Release 0.3.5

QoS 1

20 Chapter 4. Table of Contents

Haka MQTT Documentation, Release 0.3.5

QoS 1 with Pre-Ack Disconnect

4.1. User Guide 21

Haka MQTT Documentation, Release 0.3.5

QoS 2

22 Chapter 4. Table of Contents

Haka MQTT Documentation, Release 0.3.5

Subscribe/Unsubscribe Path

Subscribe

The subscribe/suback sequence shows the potential for a publish publish for the newly subscribed topic before the
suback packet arrives.

Unsubscribe Path

The unsubscribe/unsuback sequence is very similar to the subscribe/suback sequence.

4.1. User Guide 23

Haka MQTT Documentation, Release 0.3.5

Keepalive Path

The haka-mqtt client can be configured to use MqttPingreq and MqttPingresp packets to test the liveliness of
a connection. If the connection does not prove lively the client will disconnect from the server.

Receive Path

If the core reactor does not receive any bytes on the TCP socket for haka_mqtt.reactor.Reactor.
recv_idle_ping_period seconds then a MqttPingreq packet will be launched. If after haka_mqtt.
reactor.Reactor.recv_idle_abort_period seconds no bytes have been received then the reactor ter-
minates the connection and enters an error state.

Send Path

If the core reactor does not send and bytes on the underlying socket for haka_mqtt.reactor.Reactor.
keepalive_period seconds then a MqttPingreq packet will be launched. The server will disconnect the
client if it does not receive any packets after 1.5 times haka_mqtt.reactor.Reactor.keepalive_period
seconds [MQTT-3.1.2-24]. The client will detect this as a network disconnection.

Memory Usage

24 Chapter 4. Table of Contents

Haka MQTT Documentation, Release 0.3.5

Send Path

The core MQTT Reactor wraps an outgoing message queue. Maximum memory usage should be be bounded by about
2x the byte size of the outgoing message queue.

Receive Path

The peak receive path memory usage on the order of 2x the maximum MQTT message size. In MQTT 3.1.1 the max-
imum message length is mqtt_codec.packet.MqttFixedHeader.MAX_REMAINING_LEN (268435455
bytes) so the maximum memory usage will be about 512MB. Typical MQTT messages are much smaller than this
so peak memory usage will likewise be much smaller.

A possible future enhancement to the reactor could be to set a maximum receive message size lower than the protocol
maximum.

Logging

By default haka-mqtt logs details of operational events to haka log through the standard Python logging framework.
Alternatively custom loggers can be provided, or logging disabled entirely.

Log Levels

Notice of network failures and server protocol violations are logged at the WARNING level. Notice of normal opera-
tional events such as sending or receiving publish messages, connects, or normal disconnects are logged at the INFO
level. Traces of bytes sent/received on network sockets is logged at DEBUG level.

Standard Python logging Module

By default haka-mqtt logs details of operational events to haka log through the standard Python logging framework. If
a str is provided to the core haka_mqtt.reactor.Reactor log parameter then logs will be written to the logger
by that name instead.

Custom Logging

If a logging.Logger-like class is provided to the core haka_mqtt.reactor.Reactor log parameter then the
logger will be used as-is without a call to the standard library logging.getLogger method.

Disabling Logging

Logging can be disabled entirely by setting the haka_mqtt.reactor.Reactor log parameter to None.

4.1.3 Frontends

Poll/Blocking

A polling frontend is available at haka_mqtt.frontends.poll.

4.1. User Guide 25

https://mqtt-codec.readthedocs.io/en/latest/mqtt_codec.html#mqtt_codec.packet.MqttFixedHeader.MAX_REMAINING_LEN

Haka MQTT Documentation, Release 0.3.5

Select/epoll

The core reactor at haka_mqtt.reactor is suitable for use with select/epoll.

Asyncio

An asyncio-based frontend is not available at this time.

Threading

A threading-based frontend is not available at this time.

4.1.4 Examples

Since it is well reported that actions speak louder than words here are some practical worked examples.

Poll Frontend

An MQTT client that demonstrates a select-based polling interface.

A loopback client that subscribes to a topic that it publishes to. Every time a message is published it should be echoed
back to the client by the remote MQTT broker.

class examples.frontend_poll.ExampleMqttClient(endpoint)
Bases: haka_mqtt.frontends.event_queue.MqttEventEnqueue, haka_mqtt.frontends.
poll.MqttPollClient

A helper class for polling mqtt events.

It is critical that the order of inheritance is correct for this class to work correctly. The MqttEventEnqueue
class must appear before MqttPollClient so that its methods are called first.

expect_event(predicate, timeout=None)
Waits any event to occur and returns it if predicate(event) returns True; otherwise raises an ex-
ception. If timeout expires before any event is received then returns None.

Parameters

• predicate (callable) – A callable that will be passed a single argument that will be
of type mqtt_codec.packet.MqttPacketBody or haka_mqtt.frontends.
event_queue.MqttConnectionEvent.

• timeout (float or None) – Maximum amount of time to wait for an event. If None
then waits forever.

Raises UnexpectedMqttEventError – The first even that occurs predicate(event)
returns False.

Returns Returns an event matching predicate(e) or None if no such event occurred before time-
out.

Return type mqtt_codec.packet.MqttPacketBody or haka_mqtt.frontends.event_queue.MqttConnectionEvent
or None

poll_until_event(timeout=None)
Polls connection until an event occurs then returns it. If timeout passes without an event occurring returns
None.

26 Chapter 4. Table of Contents

https://mqtt-codec.readthedocs.io/en/latest/mqtt_codec.html#mqtt_codec.packet.MqttPacketBody
https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/constants.html#None
https://mqtt-codec.readthedocs.io/en/latest/mqtt_codec.html#mqtt_codec.packet.MqttPacketBody
https://docs.python.org/2.7/library/constants.html#None

Haka MQTT Documentation, Release 0.3.5

Parameters timeout (float or None) – Maximum amount of time to wait for an event.
If None then waits forever. Must satisfy condition timeout >= 0.

Returns None is returned if no event occurs.

Return type mqtt_codec.packet.MqttPacketBody or MqttConnectionEvent or None

exception examples.frontend_poll.UnexpectedMqttEventError(e)
Bases: exceptions.Exception

examples.frontend_poll.argparse_endpoint(s)
Splits an incoming string into host and port components.

>>> argparse_endpoint('localhost:1883')
('localhost', 1883)

Parameters s (str) –

Raises ArgumentTypeError – Raised when port number is out of range 1 <= port <= 65535,
when port is not an integer, or when there is more than one colon in the string.

Returns hostname, port tuple.

Return type (str, int)

examples.frontend_poll.create_parser()
Creates a command-line argument parser used by the program main method.

Returns

Return type ArgumentParser

examples.frontend_poll.main(args=[’-b’, ’latex’, ’-D’, ’language=en’, ’-d’, ’_build/doctrees’, ’.’,
’_build/latex’])

Parses arguments and passes them to run() method. Returns one when an error occurs.

Returns

Return type int

examples.frontend_poll.run(client)

Raises UnexpectedMqttEventError

Parameters client (ExampleMqttClient) –

4.1.5 Building Documentation

$ pip install sphinxcontrib-seqdiag
$ make html
$

4.1.6 Semantic Versioning

The mqtt-codec package is versioned according to Semantic Versioning 2.0.0 guidelines. A summary of SemVer is
included here for your convenience:

Given a version number MAJOR.MINOR.PATCH, increment the:

1. MAJOR version when you make incompatible API changes,

4.1. User Guide 27

https://docs.python.org/2.7/library/functions.html#float
https://docs.python.org/2.7/library/constants.html#None
https://mqtt-codec.readthedocs.io/en/latest/mqtt_codec.html#mqtt_codec.packet.MqttPacketBody
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://semver.org

Haka MQTT Documentation, Release 0.3.5

2. MINOR version when you add functionality in a backwards-compatible manner, and

3. PATCH version when you make backwards-compatible bug fixes.

Additional labels for pre-release and build metadata are available as extensions to the MA-
JOR.MINOR.PATCH format.

—Semantic Versioning Summary, <https://semver.org/#summary>, retrieved 2018-10-01.

4.1.7 Requirements

• Python 2.7, with enum34

• Python 3.0, with enum34

• Python 3.1, with enum34

• Python 3.2, with enum34

• Python 3.3, with enum34

• Python 3.4

• Python 3.5

• Python 3.6

• Python 3.7

mqtt-codec>=1.0.2

4.1.8 “Weapons Grade”

The haka-mqtt project was a response to reliability problems and the absence of thorough documentation in existing
python MQTT clients at the time. The authors were involved in projects that required thousands of clients to operate
for years without service in soft realtime conditions over unreliable low-bandwith bandwidth data links. There was
great desire to use off the shelf libraries but after two years of trying it was decided that a new approach, haka-mqtt,
was needed.

The new haka-mqtt library provides at its core a reactor built to be thoroughly and deterministically tested. Its memory
usage is stable and well documented. It is built to use non-blocking sockets in a select-type M:N thread model where
M client tasks are mapped onto N threads. When suitable non-blocking APIs are not available (as for DNS lookups),
those operations can be performed in separate thread-pools so that the client can continue its non-blocking operation.

Due to persistent questions it is necessary to state that the project should not be used in conjunction with enriched
uranium, TNT, or any form of cruise missile.

haka

A primary purpose of software is to provide its authors the opportunity to disguise elaborate puns as real work.
Eclipse’s paho project provides MQTT client implementations and the verb “pāho” means to broadcast or announce
(Maori Dictionary). What then is a “weapon’s grade announcement”? The culturally ignorant authors contend that the
haka dance performed by the Maori is truly a weapons grade announcement. The authors are also jealous and wish
that they could participate.

28 Chapter 4. Table of Contents

https://semver.org/#summary
https://www.eclipse.org/paho/
http://www.maoridictionary.co.nz/index.cfm?dictionaryKeywords=pahomit
https://www.youtube.com/watch?v=BI851yJUQQw

Haka MQTT Documentation, Release 0.3.5

4.2 API Reference

4.2.1 haka_mqtt.clock module

class haka_mqtt.clock.SettableClock
Bases: object

add_time(duration)

set_time(t)

time()

class haka_mqtt.clock.SystemClock
Bases: object

time()

4.2.2 haka_mqtt.cycle_iter module

class haka_mqtt.cycle_iter.IntegralCycleIter(start, end)
Bases: object

Parameters

• start (int) –

• end (int) –

next()
Returns the next iterator in the sequence.

Returns

Return type int

4.2.3 haka_mqtt.dns_async module

class haka_mqtt.dns_async.AsyncFutureDnsResolver(thread_pool_size=1)
Bases: object

An executor that spawns a small thread pool for performing DNS lookups. DNS lookup task sare submitted by
using calling this object as a function and those tasks will be completed asynchronously by threads in a thread
pool. The completed tasks are posted back to an internal queue and the poll() method gets the completed
tasks from the queue and notifies their subscribers of completion. Tasks with done callback methods will be
called by poll on the same threat that poll is called on.

>>> resolver = AsyncFutureDnsResolver()
>>>
>>> lookup_result = None
>>>
>>> def lookup_finished(future):
... global lookup_result
... lookup_result = future.result()
...
>>> future = resolver('localhost', 80)
>>> future.add_done_callback(lookup_finished)
>>>

(continues on next page)

4.2. API Reference 29

https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#object

Haka MQTT Documentation, Release 0.3.5

(continued from previous page)

>>> while not future.done():
... # Calling poll services callbacks and sets future to done.
... resolver.poll()
... sleep(0.1)
...
>>> assert future.done()
>>>
>>> # Only timeout=0 presently supported.
>>> assert not future.exception(timeout=0)
>>> assert not future.cancelled()
>>> # future.result(0) contains outcome of asynchronous call
>>> # to socket.getaddrinfo. Note that at this time only timeout=0
>>> # is supported by this limited api.

| Worker Threads
| +------------+
| +-->| Worker 0 |-->+
	+------------+
	+------------+
+-->	Worker 1
	+------------+
	+------------+

resolver('google.com', 80) |--> task queue----+-->| Worker ... |-->+
| | +------------+ |
| | |

AsyncFutureDnsResolver | | +------------+ |
Thread | +-->| Worker n |-->+

| +------------+ |
| |
| |

resolver.poll() |<-- completion queue<------------------+
|

close()
Closes resolver by completing all tasks in queue and joining with worker threads. New dns resolutions
cannot be scheduled after this method begins executing (calling the resolver will result in an assertion
failure).

closed()
bool: True if the object has been closed; False otherwise.

poll()
Calls done callbacks of any newly completed futures.

read_fd()
int: fileno

4.2.4 haka_mqtt.dns_sync module

class haka_mqtt.dns_sync.SynchronousFuture(result=None, exception=None)
Bases: object

add_done_callback(fn)
Attaches the callable fn to the future. fn will be called, with the future as its only argument, when the

30 Chapter 4. Table of Contents

https://docs.python.org/2.7/library/functions.html#object

Haka MQTT Documentation, Release 0.3.5

future is cancelled or finishes running.

Added callables are called in the order that they were added and are always called in a thread belonging to
the process that added them. If the callable raises an Exception subclass, it will be logged and ignored. If
the callable raises a BaseException subclass, the behavior is undefined.

If the future has already completed or been cancelled, fn will be called immediately.

cancel()
Always returns False since this future is finished the instant it is created.

Attempt to cancel the call. If the call is currently being executed and cannot be cancelled then the method
will return False, otherwise the call will be cancelled and the method will return True.

Returns

Return type bool

cancelled()
Always returns False since this future is finished the instant it is created.

Return True if the call was successfully cancelled.

Returns

Return type bool

done()
Always returns true since this future is finished the instant it is created.

Return True if the call was successfully cancelled or finished running.

Returns

Return type bool

exception(timeout=None)
Immediately returns the exception raised by the call or None if the call completed without raising.

Return the exception raised by the call. If the call hasn’t yet completed then this method will wait up to
timeout seconds. If the call hasn’t completed in timeout seconds, then a concurrent.futures.TimeoutError
will be raised. timeout can be an int or float. If timeout is not specified or None, there is no limit to the
wait time.

If the future is cancelled before completing then CancelledError will be raised.

If the call completed without raising, None is returned.

result(timeout=None)
Immediately returns the call resultor None if the call raised an exception.

Return the value returned by the call. If the call hasn’t yet completed then this method will wait up to
timeout seconds. If the call hasn’t completed in timeout seconds, then a concurrent.futures.TimeoutError
will be raised. timeout can be an int or float. If timeout is not specified or None, there is no limit to the
wait time.

If the future is cancelled before completing then CancelledError will be raised.

If the call raised, this method will raise the same exception.

class haka_mqtt.dns_sync.SynchronousFutureDnsResolver
Bases: object

4.2. API Reference 31

https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#object

Haka MQTT Documentation, Release 0.3.5

4.2.5 haka_mqtt.exception module

exception haka_mqtt.exception.PacketIdReactorException
Bases: haka_mqtt.exception.ReactorException

exception haka_mqtt.exception.ReactorException
Bases: exceptions.Exception

4.2.6 haka_mqtt.on_str module

class haka_mqtt.on_str.HexOnStr(buf)
Bases: object

class haka_mqtt.on_str.ReprOnStr(o)
Bases: object

4.2.7 haka_mqtt.reactor module

The reactor module provides an MQTT reactor class suitable for use with select and select-like interfaces like epoll.
An adapter is available to make it conveniently usable in a poll environment (haka_mqtt.frontends.poll).

class haka_mqtt.reactor.AddressReactorError(gaierror)
Bases: haka_mqtt.reactor.ReactorError

Failed to lookup a valid address.

Parameters gaierror (socket.gaierror) –

gaierror
socket.gaierror – Addressing error.

class haka_mqtt.reactor.ConnectReactorError(result)
Bases: haka_mqtt.reactor.ReactorError

Error that occurs when the server sends a connack fail in response to an initial connect packet.

Parameters result (ConnackResult) – Asserted not to be ConnackResult.accepted.

result
ConnackResult – guaranteed that value is not ConnackResult.accepted.

class haka_mqtt.reactor.DecodeReactorError(description)
Bases: haka_mqtt.reactor.ReactorError

Server wrote a sequence of bytes that could not be interpreted as an MQTT packet.

class haka_mqtt.reactor.MqttState
Bases: enum.IntEnum

Inactive states are those where there are no active deadlines, the socket is closed and there is no active I/O.
Active states are those where any of these characteristics is not met.

Active States:

• MqttState.connack

• MqttState.connected

• MqttState.mute

Inactive States:

32 Chapter 4. Table of Contents

https://docs.python.org/2.7/library/exceptions.html#exceptions.Exception
https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/select.html#module-select
https://docs.python.org/2.7/library/socket.html#socket.gaierror

Haka MQTT Documentation, Release 0.3.5

• MqttState.stopped

connack = 0

connected = 1

mute = 2

stopped = 3

class haka_mqtt.reactor.MutePeerReactorError
Bases: haka_mqtt.reactor.ReactorError

Error that occurs when the server closes its write stream unexpectedly.

class haka_mqtt.reactor.ProtocolReactorError(description)
Bases: haka_mqtt.reactor.ReactorError

Server send an inappropriate MQTT packet to the client.

class haka_mqtt.reactor.Reactor(properties, log=’haka’)
Bases: object

Parameters

• properties (ReactorProperties) –

• log (str or logging.Logger or None) – If str then the result of log-
ging.getLogger(log) is used as a logger; otherwise assumes that is a logging.Logger-like
object and asserts that it has debug, info, warning, error, and critical methods. If log is
None then logging is disabled.

clean_session
bool – Clean session flag is true/false.

client_id
str – Client id.

error
ReactorError or None – When self.state is ReactorState.error returns a subclass of ReactorError otherwise
returns None.

in_flight_packets()

is_active()
True when reactor is active; False otherwise.

An “active” reactor implies that there are outstanding scheduler deadlines active, possibly open sockets, or
possibly outstanding DNS lookup futures. This method would return True for this case.

An inactive reactor guarantees that there are no oustanding scheduler deadlines, DNS lookups, or open
sockets. An inactive reactor will never change state unless a method like start() is called to start the
reactor.

New in version 0.3.5.

Returns

Return type bool

keepalive_period
int – If this period elapses without the client sending a control packet to the server then it will generate a
pingreq packet and send it to the server. Will return zero if pingreq requests are not generated.

mqtt_state
MqttState – Current state of mqtt protocol handshake.

4.2. API Reference 33

https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/logging.html#logging.Logger
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#bool

Haka MQTT Documentation, Release 0.3.5

on_connack(reactor, connack)
Called immediately upon receiving a MqttConnack packet from the remote. The reactor.state will be
ReactorState.started or ReactorState.stopping if the reactor is shutting down.

Parameters

• reactor (Reactor) –

• connack (mqtt_codec.packet.MqttConnack) –

on_connect_fail(reactor)

Parameters reactor (Reactor) –

on_disconnect(reactor)

Parameters reactor (Reactor) –

on_puback(reactor, puback)
Called immediately upon receiving a MqttPuback packet from the remote. This method is part of the
QoS=1 message send path.

Parameters

• reactor (Reactor) –

• puback (mqtt_codec.packet.MqttPuback) –

on_pubcomp(reactor, pubcomp)
Called immediately upon receiving a MqttPubcomp packet from the remote. This is part of the QoS=2
message send path.

Parameters

• reactor (Reactor) –

• pubcomp (mqtt_codec.packet.MqttPubcomp) –

on_publish(reactor, publish)
Called immediately upon receiving a MqttSuback packet from the remote. This is part of the QoS=0, 1,
and 2 message receive paths.

Parameters

• reactor (Reactor) –

• publish (mqtt_codec.packet.MqttPublish) –

on_pubrec(reactor, pubrec)
Called immediately upon receiving a MqttPubrec packet from the remote. This is part of the QoS=2
message send path.

Parameters

• reactor (Reactor) –

• pubrec (mqtt_codec.packet.MqttPubrec) –

on_pubrel(reactor, pubrel)
Called immediately upon receiving a MqttPubrel packet from the remote. This is part of the QoS=2
message receive path.

Parameters

• reactor (Reactor) –

• pubrel (mqtt_codec.packet.MqttPubrel) –

34 Chapter 4. Table of Contents

https://mqtt-codec.readthedocs.io/en/latest/mqtt_codec.html#mqtt_codec.packet.MqttConnack
https://mqtt-codec.readthedocs.io/en/latest/mqtt_codec.html#mqtt_codec.packet.MqttPuback
https://mqtt-codec.readthedocs.io/en/latest/mqtt_codec.html#mqtt_codec.packet.MqttPubcomp
https://mqtt-codec.readthedocs.io/en/latest/mqtt_codec.html#mqtt_codec.packet.MqttPublish
https://mqtt-codec.readthedocs.io/en/latest/mqtt_codec.html#mqtt_codec.packet.MqttPubrec
https://mqtt-codec.readthedocs.io/en/latest/mqtt_codec.html#mqtt_codec.packet.MqttPubrel

Haka MQTT Documentation, Release 0.3.5

on_suback(reactor, suback)
Called immediately upon receiving a MqttSuback packet from the remote.

Parameters

• reactor (Reactor) –

• suback (mqtt_codec.packet.MqttSuback) –

on_unsuback(reactor, unsuback)
Called immediately upon receiving a MqttUnsuback packet from the remote.

Parameters

• reactor (Reactor) –

• unsuback (mqtt_codec.packet.MqttUnsuback) –

preflight_packets()

publish(topic, payload, qos, retain=False)
Places a publish packet on the preflight queue. Messages in the preflight queue are fair-queued and
launched to the server. The reactor certainly will try to place as many messages in-flight as it is able
to. If you want to limit the number of messages in-flight then a queue should be maintained outside of the
core reactor.

QoS 0 messages are placed in the pre-flight buffer and are eligable for delivery as fast as the socket allows.
If the reactor encounters an error or stops and is subsequently started then any QoS=0 messages in the
preflight queue are discarded. QoS 0 messages are considered delivered as soon as one of their bytes is
placed in the socket write buffer regardless of whether the network successfully delivers them to their
destination.

QoS 1 messages are placed in the pre-flight buffer and are eligable for delivery as fast as the socket allows.
They are placed in the in-flight queue as soon as the first byte of the packet is placed in the socket write
buffer. If the reactor encounters an error or stops and is subsequently started then any QoS=1 messages in
the preflight queue maintain their positions. Any messages in the in-flight queue are placed in the front of
the preflight queue as publish packets with their dupe flags set to True.

QoS 2 messages are placed in the pre-flight buffer and are eligable for delivery as fast as the socket allows.
They are placed in the in-flight queue as soon as the first byte of the packet is placed in the socket write
buffer. If the reactor encounters an error or stops and is subsequently started then any QoS=2 messages
in the preflight queue maintain their positions. Any messages in the in-flight queue awaiting pubrec
acknowledgements are placed in the front of the preflight queue as publish packets with their dupe flags
set to True. Any messages in the in-flight queue awaiting pubcomp acknowledgements are placed in the
front of the preflight queue as pubrel packets.

Parameters

• topic (str) –

• payload (bytes) –

• qos (int) – 0 <= qos <= 2

• retain (bool) –

Raises haka_mqtt.exception.PacketIdReactorException – Raised when there
are no free packet ids to create a MqttPublish packet with.

Returns A publish ticket. The returned object will satisfy ticket.status is MqttPublishSta-
tus.preflight.

Return type MqttPublishTicket

4.2. API Reference 35

https://mqtt-codec.readthedocs.io/en/latest/mqtt_codec.html#mqtt_codec.packet.MqttSuback
https://mqtt-codec.readthedocs.io/en/latest/mqtt_codec.html#mqtt_codec.packet.MqttUnsuback
https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#bool

Haka MQTT Documentation, Release 0.3.5

read()
Calls recv on underlying socket exactly once and returns the number of bytes read. If the underlying socket
does not return any bytes due to an error or exception then zero is returned and the reactor state is set to
error.

This method may be called at any time in any state and if self is not prepared for a read at that point then
no action will be taken.

The socket.settimeout can be used to perform a blocking read with a timeout on the underlying socket.

Returns number of bytes read from socket.

Return type int

recv_idle_abort_period
int – Connection will be closed if bytes have not been received from remote in this many seconds. Typically
this is 1.5x the self.keepalive_period.

recv_idle_ping_period
int – 0 <= self.recv_idle_ping_period; sends a mqtt_codec.packet.MqttPingreq
packet to the server after this many seconds without receiving and bytes on the socket. If zero then ping
messages are not sent when receive stream is idle.

send_packet_ids()

Returns A set of active send-path packet ids.

Return type set[int]

sock_state
SocketState – Current state of the socket connection.

start()
Attempts to connect with remote if in one of the inactive states ReactorState.init,
ReactorState.stopped, ReactorState.error. The method has no effect if already in an ac-
tive state.

state
ReactorState – Current reactor state.

stop()

subscribe(topics)
Places a subscribe packet on the preflight queue. Messages in the preflight queue will be placed in-
flight as soon as the socket allows. Multiple messages may be placed in-flight at the same time.

If the reactor encounters an error or stops then unacknowledged subscribe packets will be dropped
whether they are in the preflight or the in-flight queues.

Parameters topics (iterable of MqttTopic) –

Raises haka_mqtt.exception.PacketIdReactorException – Raised when there
are no free packet ids to create a MqttSubscribe packet with.

Returns

Return type MqttSubscribeTicket

terminate()
When in an active state immediately shuts down any socket reading and writing, closes the socket,
cancels all outstanding scheduler deadlines, puts the reactor into state ReactorState.stopped, then calls
self.on_connect_fail (if in a connect/connack state) or alternatively self.on_disconnect if in some other
active state. When reactor is not in an inactive state this method has no effect.

36 Chapter 4. Table of Contents

https://docs.python.org/2.7/library/functions.html#int
https://mqtt-codec.readthedocs.io/en/latest/mqtt_codec.html#mqtt_codec.packet.MqttPingreq
https://docs.python.org/2.7/library/stdtypes.html#set
https://docs.python.org/2.7/library/functions.html#int

Haka MQTT Documentation, Release 0.3.5

unsubscribe(topics)
Places an unsubscribe packet on the preflight queue. Messages in the preflight queue will be placed
in-flight as soon as the socket allows. Multiple messages may be placed in-flight at the same time.

If the reactor encounters an error or stops then unacknowledged unsubscribe packets will be dropped
whether they are in the preflight or the in-flight queues.

Parameters topics (iterable of str) –

Raises haka_mqtt.exception.PacketIdReactorException – Raised when there
are no free packet ids to create a MqttUnsubscribe packet with.

Returns

Return type MqttUnsubscribeTicket

want_read()
True if the reactor is ready to process incoming socket data; False otherwise.

Returns

Return type bool

want_write()
True if the reactor is ready write data to the socket; False otherwise.

Returns

Return type bool

will
mqtt_codec.packet.MqttWill or None – Last will and testament.

write()
If there is any data queued to be written to the underlying socket then a single call to socket send will be
made to try and flush it to the socket write buffer.

This method may be called at any time in any state and if self is not prepared for a write at that point then
no action will be taken.

The socket.settimeout can be used to perform a blocking write with a timeout on the underlying socket.

class haka_mqtt.reactor.ReactorError
Bases: object

class haka_mqtt.reactor.ReactorProperties
Bases: object

socket_factory
haka_mqtt.socket_factory.SocketFactory

name_resolver
callable – DNS resolver.

scheduler
TODO

selector
Selector

client_id
str

endpoint
tuple – 2-tuple of (host: str, port: int). The port value is constrainted such that 0 <= port <= 2**16-1.

4.2. API Reference 37

https://docs.python.org/2.7/library/functions.html#bool
https://docs.python.org/2.7/library/functions.html#bool
https://mqtt-codec.readthedocs.io/en/latest/mqtt_codec.html#mqtt_codec.packet.MqttWill
https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#object

Haka MQTT Documentation, Release 0.3.5

keepalive_period
int – 0 <= keepalive_period <= 2*16-1; zero disables keepalive. Sends a mqtt_codec.packet.
MqttPingreq packet to the server after this many seconds without sending and data over the socket.
The server will disconnect the client as if there has been a network error after 1.5x‘‘self.keepalive_period‘‘
seconds without receiving any bytes [MQTT-3.1.2-24].

recv_idle_ping_period
int – 0 < recv_idle_ping_period; sends a mqtt_codec.packet.MqttPingreq packet to the server
after this many seconds without receiving and bytes on the socket.

recv_idle_abort_period
int – 0 < recv_idle_abort_period; aborts connection after this time without receiving any bytes from remote
(typically set to 1.5x self.recv_idle_ping_period).

clean_session
bool – With clean session set to True reactor will clear all message buffers on disconnect without regard to
QoS; otherwise unacknowledged messages will be retransmitted after a re-connect.

address_family
int – Address family; one of the socket.AF_* constants (eg. socket.AF_UNSPEC for any family,
socket.AF_INET for IP4 socket.AF_INET6 for IP6). Set to socket.AF_UNSPEC by default.

username
str optional

password
str optional

class haka_mqtt.reactor.ReactorState
Bases: enum.IntEnum

Inactive states are those where there are no active deadlines, the socket is closed and there is no active I/O.
Active states are those where any of these characteristics is not met.

Active States:

• ReactorState.init

• ReactorState.stopped

• ReactorState.error

Inactive States:

• ReactorState.connecting

• ReactorState.handshake

• ReactorState.connack

• ReactorState.connected

error = 5

init = 0

started = 2

starting = 1

stopped = 4

stopping = 3

38 Chapter 4. Table of Contents

https://mqtt-codec.readthedocs.io/en/latest/mqtt_codec.html#mqtt_codec.packet.MqttPingreq
https://mqtt-codec.readthedocs.io/en/latest/mqtt_codec.html#mqtt_codec.packet.MqttPingreq
https://mqtt-codec.readthedocs.io/en/latest/mqtt_codec.html#mqtt_codec.packet.MqttPingreq
https://docs.python.org/2.7/library/socket.html#socket.AF_INET
https://docs.python.org/2.7/library/socket.html#socket.AF_INET6

Haka MQTT Documentation, Release 0.3.5

class haka_mqtt.reactor.RecvTimeoutReactorError
Bases: haka_mqtt.reactor.ReactorError

Server fails to respond in a timely fashion.

class haka_mqtt.reactor.SocketReactorError(errno_val)
Bases: haka_mqtt.reactor.ReactorError

A socket.error exception was raised by the socket subsystem and it the error code was self.errno. If this errno is
in the errno.errorcode lookup table then repr will show the description.

Parameters errno_val (int) –

errno
int – value in errno.errorcode.

class haka_mqtt.reactor.SocketState
Bases: enum.IntEnum

Inactive states are those where there are no active deadlines, the socket is closed and there is no active I/O.
Active states are those where any of these characteristics is not met.

Active States:

• SocketState.name_resolution

• SocketState.connecting

• SocketState.handshake

• SocketState.connected

• SocketState.deaf

• SocketState.mute

Inactive States:

• SocketState.stopped

connected = 5

connecting = 2

deaf = 6

handshake = 3

mute = 7

name_resolution = 1

stopped = 8

class haka_mqtt.reactor.SslReactorError(ssl_error)
Bases: haka_mqtt.reactor.ReactorError

A socket error-code in errno.errorcode.

Parameters ssl_error (ssl.SSLError) –

error
ssl.SSLError – error value.

4.2. API Reference 39

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/ssl.html#ssl.SSLError

Haka MQTT Documentation, Release 0.3.5

4.2.8 haka_mqtt.frontends.poll module

class haka_mqtt.frontends.poll.BlockingMqttClient(properties, log=’haka’)
Bases: haka_mqtt.reactor.Reactor

A client that employs socket.settimeout to use blocking operations on sockets. Although in general the socket
timeout is respected by the operating system, this method uses a synchronous DNS lookup and this lookup does
not have any timeout.

Parameters properties (MqttPollClientProperties) –

poll(period=0.0)

class haka_mqtt.frontends.poll.MqttPollClient(properties, log=’haka’)
Bases: haka_mqtt.reactor.Reactor

Parameters properties (MqttPollClientProperties) –

poll(period=0.0)

class haka_mqtt.frontends.poll.MqttPollClientProperties
Bases: object

client_id
str or None – The MQTT client id to pass to the MQTT server. If None then a client-id will be generated
with A client id will be randomly generated based on generate_client_id().

address_family
int – Address family; one of the socket.AF_* constants (eg. socket.AF_UNSPEC for any fam-
ily, socket.AF_INET for IP4 socket.AF_INET6 for IP6). By default this will be socket.
AF_UNSPEC.

host
str – IP address or host name.

port
int – Integer such that 0 <= port <= 2**16-1.

keepalive_period
str – 0 <= keepalive_period <= 2*16-1; zero disables keepalive. Sends a MqttPingreq packet to the
server after this many seconds without sending and data over the socket. The server will disconnect the
client as if there has been a network error after 1.5x‘‘self.keepalive_period‘‘ seconds without receiving
any bytes [MQTT-3.1.2-24].

recv_idle_ping_period
int – 0 < recv_idle_ping_period; sends a MqttPingreq packet to the server after this many seconds
without receiving and bytes on the socket.

recv_idle_abort_period
int – 0 < recv_idle_abort_period; aborts connection after this time without receiving any bytes from remote
(typically set to 1.5x self.recv_idle_ping_period).

ssl
bool or SSLContext – When True connects to server using a default SSL socket context created with ssl.
create_default_context().

If ssl has a callable wrap_socket method then it is assumed that ssl is a SSLContext to be used for
securing sockets.

haka_mqtt.frontends.poll.generate_client_id()
Generates a client id based on current time, hostname, and process-id.

Returns

40 Chapter 4. Table of Contents

https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/socket.html#socket.AF_INET
https://docs.python.org/2.7/library/socket.html#socket.AF_INET6
https://docs.python.org/2.7/library/ssl.html#ssl.create_default_context
https://docs.python.org/2.7/library/ssl.html#ssl.create_default_context

Haka MQTT Documentation, Release 0.3.5

Return type str

4.2.9 haka_mqtt.scheduler module

class haka_mqtt.scheduler.ClockScheduler(clock)
Bases: haka_mqtt.scheduler.Scheduler

instant()
Current clock instant.

Returns Current clock scheduler.

Return type int

poll()
Calls all callbacks awaiting execution to this point.

class haka_mqtt.scheduler.Deadline(deadline_entry)
Bases: object

cancel()
Stops a scheduled callback from being made; has no effect if cancel is called after the callback has already
been made.

expired()
bool: True if callback has already been called; False otherwise.

class haka_mqtt.scheduler.DurationScheduler
Bases: haka_mqtt.scheduler.Scheduler

instant()
Returns the current tick.

Returns

Return type int

poll(duration)
Adds duration to self.instant() and calls all scheduled callbacks.

Parameters duration (int) –

class haka_mqtt.scheduler.Scheduler
Bases: object

add(duration, cb)
Adds duration to self.instant() and calls all scheduled callbacks.

Parameters

• duration (int) – Number of ticks passed.

• cb (callable()) – No calling with so

Returns

Return type Deadline

instant()
Returns the current tick.

Returns

Return type int

4.2. API Reference 41

https://docs.python.org/2.7/library/functions.html#str
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/functions.html#int

Haka MQTT Documentation, Release 0.3.5

remaining()
Duration remaining to next scheduled callback.

Returns

Return type int or None

4.2.10 haka_mqtt.selector module

class haka_mqtt.selector.Selector
Bases: object

add_read(fd, reactor)

Parameters

• fd (file descriptor) – File-like object.

• reactor (haka_mqtt.reactor.Reactor) –

add_write(f, reactor)

Parameters

• fd (file descriptor) – File-like object.

• reactor (haka_mqtt.reactor.Reactor) –

del_read(fd, reactor)

Parameters

• fd (file descriptor) – File-like object.

• reactor (haka_mqtt.reactor.Reactor) –

del_write(fd, reactor)

Parameters

• fd (file descriptor) – File-like object.

• reactor (haka_mqtt.reactor.Reactor) –

4.2.11 haka_mqtt.socket_factory module

class haka_mqtt.socket_factory.BlockingSocketFactory
Bases: object

class haka_mqtt.socket_factory.BlockingSslSocketFactory(context)
Bases: object

class haka_mqtt.socket_factory.SocketFactory
Bases: object

class haka_mqtt.socket_factory.SslSocketFactory(context)
Bases: object

42 Chapter 4. Table of Contents

https://docs.python.org/2.7/library/functions.html#int
https://docs.python.org/2.7/library/constants.html#None
https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#object
https://docs.python.org/2.7/library/functions.html#object

Haka MQTT Documentation, Release 0.3.5

4.3 Change Log

4.3.1 0.3.5 (2019-02-12)

New

#35: Added is_active method to core reactor.

Determining whether a reactor had oustanding socket I/O, scheduler deadlines or futures was:

if reactor.state in ACTIVE_STATES: pass # Do stuff

but this is less obvious than:

if reactor.is_active(): pass # Do stuff

The change should be helpful particularly to new users of the library.

https://github.com/kcallin/haka-mqtt/issues/35

Fix

#27: MQTT 3.1.1, MQTT-2.3.1-1, Packet IDs must be non-zero.

Packet ID generation starts at zero and this is a violation of MQTT 3.1.1 MQTT-2.3.1-1. Packet IDs are
now generated beginning with one instead of zero.

https://github.com/kcallin/haka-mqtt/issues/27

#30: BlockingMqttClient must use BlockingSslSocketFactory for ssl.

When uses incorrect socket factory when properties.ssl is an SSLContext BlockingMqttClient incorrectly
uses a SslSocketFactory instead of a BlockingSslSocketFactory.

https://github.com/kcallin/haka-mqtt/issues/30

#31: Log chosen DNS entry at INFO; others at DEBUG.

On DNS lookup one entry is chosen as the endpoint and other entries are logged for information purposes.
This leads to noisy logs. Chosen entry now logged at INFO and others are logged at DEBUG level.

https://github.com/kcallin/haka-mqtt/issues/31

#32: DNS lookup of IP6 addresses logs address in square brackets.

When logging IP6 addresses from DNS lookups the addresses should be enclosed by square brackets “[]”
to distinguish them from port numbers.

Before: 2001:db8:85a3:8d3:1319:8a2e:370:7348:443 After: [2001:db8:85a3:8d3:1319:8a2e:370:7348]:443

https://github.com/kcallin/haka-mqtt/issues/32

#34: MqttPingreq not always scheduled correctly.

Client is not permitted to have more than one unacknowledged pingreq at any given time. When a
keepalive pingreq comes due and the acknowledging pingresp is delayed (by say more than keepalive
period) the reactor needs to be able to immediately launch a pingreq upon receipt of the pingresp.

https://github.com/kcallin/haka-mqtt/issues/34

4.3. Change Log 43

https://github.com/kcallin/haka-mqtt/issues/35
https://github.com/kcallin/haka-mqtt/issues/27
https://github.com/kcallin/haka-mqtt/issues/30
https://github.com/kcallin/haka-mqtt/issues/31
https://github.com/kcallin/haka-mqtt/issues/32
https://github.com/kcallin/haka-mqtt/issues/34

Haka MQTT Documentation, Release 0.3.5

4.3.2 0.3.4 (2019-01-31)

New

• BlockingMqttClient and MqttPollClient now support a SSLContext parameter.

Fix

#28: Assertion failure in __recv_idle_abort_timeout handler.

If an recv_idle_abort_timeout occurs while the keepalive_timeout is active then an assertion fails resulting
in a library crash. The assertion was incorrectly placed and has been removed. Bug has existed since 0.3.0.

https://github.com/kcallin/haka-mqtt/issues/28

4.3.3 0.3.3 (2019-01-29)

Fix

#22: On p3k DNS async resolver does not pass bytes to write.

On Python 3 the DNS async resolver passes str instead of bytes to an os.write call. This results in a
TypeError and crash.

https://github.com/kcallin/haka-mqtt/issues/22

#24: On p3k HexOnStr __str__ method fails to return a str.

On Python 3 str(HexOnStr) fails to return str and this results in a TypeError.

https://github.com/kcallin/haka-mqtt/issues/24

#25: socket.timeout has None errno; fails assertion.

When using reactor in blocking mode with timeouts, socket.timeout exceptions can be raised. This is a
subclass of socket.error and caught as such. The reactor asserts that socket.error has meaningful errno so
this crashes.

https://github.com/kcallin/haka-mqtt/issues/25

#26: Poll frontends guarantee at least one read/write per poll call.

When MqttPollClient/MqttBlockingClient were called, they should guarantee at least one read/write call
per poll. This way when the poll period is set to zero the read/write call will still be called (previously it
might not be as clocks would timeout before the read/write call was made.

https://github.com/kcallin/haka-mqtt/issues/26

4.3.4 0.3.2 (2019-01-13)

Fix

#21: haka_mqtt/frontends/poll.py not included in build

The polling frontend was mistakenly left out of the pypi package.

https://github.com/kcallin/haka-mqtt/issues/21

44 Chapter 4. Table of Contents

https://github.com/kcallin/haka-mqtt/issues/28
https://github.com/kcallin/haka-mqtt/issues/22
https://github.com/kcallin/haka-mqtt/issues/24
https://github.com/kcallin/haka-mqtt/issues/25
https://github.com/kcallin/haka-mqtt/issues/26
https://github.com/kcallin/haka-mqtt/issues/21

Haka MQTT Documentation, Release 0.3.5

4.3.5 0.3.1 (2018-12-30)

New

#20: Remove ordering restrictions on QoS=2 send path.

https://github.com/kcallin/haka-mqtt/issues/20

Fix

#17: Connect fail after DNS lookup fails to enter error state.

After a DNS lookup succeeds but the subsequent socket connect fails core reactor may not enter the error
state.

https://github.com/kcallin/haka-mqtt/issues/17

#18: Haka crash when SSL raises socket.error with zero errno.

Some SSL subsystems can raise socket.error exceptions with zero errno values. This fails one of haka’s
assertions. The assertion has been removed and the SocketReactorError class description has been
changed.

https://github.com/kcallin/haka-mqtt/issues/18

#19: Full socket buffer can trigger message retransmissions.

When the socket buffer is full and a call to send returns with zero bytes then a second copy of the message
may be queued in the reactor write buffer. The end result is that the message can be placed in flight more
than once.

https://github.com/kcallin/haka-mqtt/issues/19

4.3.6 0.3.0 (2018-12-17)

It is recommended to update to update to 0.3.0 immediately to avoid a crash as a result of #16.

New

#15: Support disabling Reactor.recv_idle_ping_period. https://github.com/kcallin/haka-mqtt/issues/15

Fix

#16: Keepalive scheduled while pingreq already active.

If a write operation is triggered with a pingreq in-the-air then the reactor incorrectly schedules a new
pingreq. There is no danger of a new pingreq being launched but if a recv_idle_abort_timeout occurs
while in this condition an assertion fails.

This is a crashing bug.

https://github.com/kcallin/haka-mqtt/issues/16

4.3. Change Log 45

https://github.com/kcallin/haka-mqtt/issues/20
https://github.com/kcallin/haka-mqtt/issues/17
https://github.com/kcallin/haka-mqtt/issues/18
https://github.com/kcallin/haka-mqtt/issues/19
https://github.com/kcallin/haka-mqtt/issues/15
https://github.com/kcallin/haka-mqtt/issues/16

Haka MQTT Documentation, Release 0.3.5

4.3.7 0.2.0 (2018-11-29)

New

#9: Run without keepalive. https://github.com/kcallin/haka-mqtt/issues/9

Fix

#13: trigger keepalive on send instead of recv. https://github.com/kcallin/haka-mqtt/issues/13

4.3.8 0.1.0 (2018-10-25)

• Initial release.

4.4 Developer Guide

The developer’s guide is for a person who wants to change and contribute changes to haka-mqtt. It builds on informa-
tion in User Guide.

4.4.1 Uncontrolled Builds

Uncontrolled source builds are created in the standard python fashion:

$ python setup.py sdist
running sdist
running egg_info
writing requirements to haka_mqtt.egg-info/requires.txt
writing haka_mqtt.egg-info/PKG-INFO
writing top-level names to haka_mqtt.egg-info/top_level.txt
writing dependency_links to haka_mqtt.egg-info/dependency_links.txt
reading manifest file 'haka_mqtt.egg-info/SOURCES.txt'
writing manifest file 'haka_mqtt.egg-info/SOURCES.txt'
running check
creating haka-mqtt-0.1.0-uncontrolled-20180907
creating haka-mqtt-0.1.0-uncontrolled-20180907/haka_mqtt
creating haka-mqtt-0.1.0-uncontrolled-20180907/haka_mqtt.egg-info
[... removed for brevity ...]
copying tests/test_reactor.py -> haka-mqtt-0.1.0-uncontrolled-20180907/tests
copying tests/test_scheduler.py -> haka-mqtt-0.1.0-uncontrolled-20180907/tests
Writing haka-mqtt-0.1.0-uncontrolled-20180907/setup.cfg
creating dist
Creating tar archive
removing 'haka-mqtt-0.1.0-uncontrolled-20180907' (and everything under it)
$ ls dist
haka-mqtt-0.1.0-uncontrolled-20180907.tar.gz
$

The output artifact has the word “uncontrolled” along with a build date so that users will know the artifact is not a
release or from a continuous integration build server.

46 Chapter 4. Table of Contents

https://github.com/kcallin/haka-mqtt/issues/9
https://github.com/kcallin/haka-mqtt/issues/13

Haka MQTT Documentation, Release 0.3.5

4.4.2 Tests

The haka-mqtt library comes with an extensive battery of tests. The tests are built to be as deterministic as possible -
to the point that the loggers are not connected to the system clock so that the time of a given log message in the tests
will be identical from one test run to the next.

The built-in automated tests can be run from the command-line in the conventional python manner:

$ python setup.py test
$

What is less conventional is that logging to standard output can be enabled by setting the LOGGING environment
variable.

$ LOGGING=true python setup.py test
$

4.4.3 Coverage

Test coverage is monitored using coverage.py version 4.5 or higher. Normally this can be installed through your
operating system’s package manager (like rpm or apt-get) or by using pip. A coverage configuration file is included at
.coveragerc and the tool can be run in this fashion:

$ coverage run setup.py test
running test
Searching for mock
Best match: mock 2.0.0
Processing mock-2.0.0-py2.7.egg

Using /home/kcallin/src/haka-mqtt/.eggs/mock-2.0.0-py2.7.egg
Searching for pbr>=0.11
Best match: pbr 4.2.0
Processing pbr-4.2.0-py2.7.egg

Using /home/kcallin/src/haka-mqtt/.eggs/pbr-4.2.0-py2.7.egg
running egg_info
writing requirements to haka_mqtt.egg-info/requires.txt
writing haka_mqtt.egg-info/PKG-INFO
writing top-level names to haka_mqtt.egg-info/top_level.txt
writing dependency_links to haka_mqtt.egg-info/dependency_links.txt
reading manifest file 'haka_mqtt.egg-info/SOURCES.txt'
writing manifest file 'haka_mqtt.egg-info/SOURCES.txt'
running build_ext
test_connack (tests.test_reactor_keepalive.TestKeepalive) ... ok
test_connected (tests.test_reactor_keepalive.TestKeepalive) ... ok
test_connected_keepalive_with_recv_qos0 (tests.test_reactor_keepalive.TestKeepalive) .
→˓.. ok
test_connected_unsolicited_pingresp (tests.test_reactor_keepalive.TestKeepalive) ...
→˓ok
[... removed for brevity...]
test_repeat (tests.test_cycle_iter.TestIterCycles) ... ok
test_scheduler (tests.test_scheduler.TestScheduler) ... ok
test_scheduler_0 (tests.test_scheduler.TestScheduler) ... ok

--
Ran 95 tests in 0.376s

(continues on next page)

4.4. Developer Guide 47

https://coverage.readthedocs.io

Haka MQTT Documentation, Release 0.3.5

(continued from previous page)

OK
$ coverage report
Name Stmts Miss Branch BrPart Cover

haka_mqtt/__init__.py 0 0 0 0 100%
haka_mqtt/clock.py 13 1 0 0 92%
haka_mqtt/cycle_iter.py 16 0 2 0 100%
haka_mqtt/exception.py 4 0 0 0 100%
haka_mqtt/mqtt_request.py 89 2 6 2 96%
haka_mqtt/null_log.py 15 7 0 0 53%
haka_mqtt/on_str.py 17 3 4 1 71%
haka_mqtt/packet_ids.py 22 2 4 2 85%
haka_mqtt/reactor.py 945 83 316 29 90%
haka_mqtt/scheduler.py 75 11 12 1 84%
haka_mqtt/selector.py 11 0 0 0 100%

TOTAL 1207 109 344 35 89%

4.4.4 Docstrings

Python source code is documented according to the the numpy documentation standard at https://numpydoc.
readthedocs.io/en/latest/format.html.

4.4.5 Building Documentation

The documentation for mqtt-codec is created with Sphinx and is build the fashion usual to that framework:

$ pip install sphinxcontrib-plantuml enum34 mqtt-codec
$ cd doc
$ make html
$

4.4.6 Requirements

The project will eventually track requirements using a project like Pipfile.

4.5 Distributing haka-mqtt

The release procedure was created using information from these core sources:

• PEP 503 - Simple Repository API

• Python Packaging User Guide

• Twine

4.5.1 Documentation

Verify that version and release numbers in doc/source/conf.py match setup.py.

48 Chapter 4. Table of Contents

https://numpydoc.readthedocs.io/en/latest/format.html
https://numpydoc.readthedocs.io/en/latest/format.html
http://www.sphinx-doc.org/
https://github.com/pypa/pipfile
https://www.python.org/dev/peps/pep-0503/
https://packaging.python.org/
https://pypi.org/project/twine/

Haka MQTT Documentation, Release 0.3.5

$ grep -e version -e release doc/source/conf.py
The short X.Y version
version = u'1.0.0'
The full version, including alpha/beta/rc tags
release = u'1.0.0'
$

Make sure copyright dates in doc/source/conf.py are correct:

$ grep -i copyright doc/source/conf.py
copyright = u'2018 - 2019, Keegan Callin'
$

Verify requirements document at doc/source/requirements.rstmatches setup.py (and not the other way
around).

4.5.2 Test Release

Clean build directory and ensure there are no old build artifacts.

$ rm -rf dist build haka_mqtt.egg-info htmlcov
$ ls dist
$

It’s a common problem to accidentally forget to commit important changes. To combat this the pyvertest.py
procedure clones the haka repository, passes it to a docker container, and runs a test battery in a set of environments.

$./pyvertest.py
[... removed for brevity ...]
pip install python:3.7-alpine3.8
docker run --rm -v /home/kcallin/src/haka-mqtt:/haka-mqtt python:3.7-alpine3.8 pip
→˓install /haka-mqtt
Processing /haka-mqtt
Building wheels for collected packages: haka-mqtt, mqtt-codec

Running setup.py bdist_wheel for haka-mqtt: started
Running setup.py bdist_wheel for haka-mqtt: finished with status 'done'
Stored in directory: /root/.cache/pip/wheels/c5/b3/fa/

→˓e30017929f15cb43137c499453ff45f3754db112f34a52cb9d
Running setup.py bdist_wheel for mqtt-codec: started
Running setup.py bdist_wheel for mqtt-codec: finished with status 'done'
Stored in directory: /root/.cache/pip/wheels/b7/6b/0f/

→˓5fb8026a75541fb9fcdec2f3fc33b75aad929b48e85eca68a9
Successfully built haka-mqtt mqtt-codec
Installing collected packages: mqtt-codec, haka-mqtt
Successfully installed haka-mqtt-0.3.0-uncontrolled-20181217 mqtt-codec-1.0.1
Return code 0
Removing container id
→˓b9d481a9f49b966fa6708e1ef9fda16d0142b35a7613fc794a43105b0eb6eb2b.
Removing temp directory /tmp/tmput2xuulf.
> 10/10 okay.

Ensure that CHANGELOG.rst has release version and release date correct as well as release content listed.

$ vi CHANGELOG.rst
$ git commit -S CHANGELOG.rst

Create test release artifacts.

4.5. Distributing haka-mqtt 49

Haka MQTT Documentation, Release 0.3.5

$ python setup.py egg_info -D -b 'a' sdist
running sdist
running egg_info
writing requirements to haka_mqtt.egg-info/requires.txt
writing haka_mqtt.egg-info/PKG-INFO
writing top-level names to haka_mqtt.egg-info/top_level.txt
writing dependency_links to haka_mqtt.egg-info/dependency_links.txt
reading manifest file 'haka_mqtt.egg-info/SOURCES.txt'
writing manifest file 'haka_mqtt.egg-info/SOURCES.txt'
running check
creating haka-mqtt-0.1.2
creating haka-mqtt-0.1.2/haka_mqtt
[... removed for brevity ...]
copying tests/test_reactor.py -> haka-mqtt-0.1.2/tests
copying tests/test_scheduler.py -> haka-mqtt-0.1.2/tests
Writing haka-mqtt-0.1.2/setup.cfg
Creating tar archive
removing 'haka-mqtt-0.1.2' (and everything under it)
$ ls dist
haka-mqtt-0.1.2.tar.gz
$

GPG signatures are created for test release artifacts.

$ gpg2 --detach-sign -a dist/*

You need a passphrase to unlock the secret key for
user: "Keegan Callin <kc@kcallin.net>"
4096-bit RSA key, ID DD53792F, created 2017-01-01 (main key ID 14BC2EFF)

gpg: gpg-agent is not available in this session
$ ls dist
haka-mqtt-0.1.2.tar.gz haka-mqtt-0.1.2.tar.gz.asc
$ gpg2 --verify dist/*.asc
gpg: assuming signed data in `dist/haka-mqtt-0.1.2.tar.gz'
gpg: Signature made Sat 01 Sep 2018 11:00:31 AM MDT using RSA key ID DD53792F
gpg: Good signature from "Keegan Callin <kc@kcallin.net>" [ultimate]
Primary key fingerprint: BD51 01F1 9699 A719 E563 6D85 4A4A 7B98 14BC 2EFF

Subkey fingerprint: BE56 D781 0163 488F C7AE 62AC 3914 0AE2 DD53 792F
$

Ensure that twine version 1.12.0 or higher is installed:

$ twine --version
twine version 1.12.0 (pkginfo: 1.4.2, requests: 2.20.1, setuptools: 40.6.2,
requests-toolbelt: 0.8.0, tqdm: 4.28.1)

Verify that distribution passes twine checks:

$ twine check dist/*
Checking distribution dist/haka-mqtt-1.0.0.tar.gz: Passed

Release artifacts are uploaded to TEST PyPI.

$ twine upload --repository-url https://test.pypi.org/legacy/ dist/*
Uploading distributions to https://test.pypi.org/legacy/
Enter your username: kc

(continues on next page)

50 Chapter 4. Table of Contents

Haka MQTT Documentation, Release 0.3.5

(continued from previous page)

Enter your password:
Uploading haka-mqtt-0.1.2.tar.gz
$

The resulting TestPyPI entry should be inspected for correctness. “The database for TestPyPI may be periodically
pruned, so it is not unusual for user accounts to be deleted1”. Packages on TEST PyPI and real PyPI cannot be
removed upon distributor demand. On TEST PyPI packages may be removed on prune, on real PyPI they will remain
forever. A checklist to help verify the PyPI release page follows:

• Version Number is Correct

• Documentation Link is Correct

• ReST README.rst is rendered correctly on the front page.

After the checklist is complete then it is time to upload to real PyPI and verify that the release is complete. There is
no undoing this operation. Think Carefully.

PEP 508 – Dependency specification for Python Software Packages

PEP-314 – Metadata for Python Software Packages v1.1

4.5.3 Official Release

Create, sign, and push release tag:

$ git tag -s v0.1.0
$ git push origin v0.1.0

Remove test artifacts:

$ rm -rf dist build haka_mqtt.egg-info htmlcov
$ ls dist
$

Create official release artifacts.

$ python setup.py egg_info -D -b '' sdist
running sdist
running egg_info
writing requirements to haka_mqtt.egg-info/requires.txt
writing haka_mqtt.egg-info/PKG-INFO
writing top-level names to haka_mqtt.egg-info/top_level.txt
writing dependency_links to haka_mqtt.egg-info/dependency_links.txt
reading manifest file 'haka_mqtt.egg-info/SOURCES.txt'
writing manifest file 'haka_mqtt.egg-info/SOURCES.txt'
running check
creating haka-mqtt-0.1.2
creating haka-mqtt-0.1.2/haka_mqtt
[... removed for brevity ...]
copying tests/test_reactor.py -> haka-mqtt-0.1.2/tests
copying tests/test_scheduler.py -> haka-mqtt-0.1.2/tests
Writing haka-mqtt-0.1.2/setup.cfg
Creating tar archive
removing 'haka-mqtt-0.1.2' (and everything under it)

(continues on next page)

1 Test PyPI, Registering Your Account, retrieved 2018-09-07.

4.5. Distributing haka-mqtt 51

https://test.pypi.org/project/haka-mqtt/
https://packaging.python.org/guides/using-testpypi/#registering-your-account

Haka MQTT Documentation, Release 0.3.5

(continued from previous page)

$ ls dist
haka-mqtt-0.1.2.tar.gz
$

GPG sign official release artifact:

$ gpg2 --detach-sign -a dist/*

You need a passphrase to unlock the secret key for
user: "Keegan Callin <kc@kcallin.net>"
4096-bit RSA key, ID DD53792F, created 2017-01-01 (main key ID 14BC2EFF)

gpg: gpg-agent is not available in this session
$ ls dist
haka-mqtt-0.1.2.tar.gz haka-mqtt-0.1.2.tar.gz.asc
$ gpg2 --verify dist/*.asc
gpg: assuming signed data in `dist/haka-mqtt-0.1.2.tar.gz'
gpg: Signature made Sat 01 Sep 2018 11:00:31 AM MDT using RSA key ID DD53792F
gpg: Good signature from "Keegan Callin <kc@kcallin.net>" [ultimate]
Primary key fingerprint: BD51 01F1 9699 A719 E563 6D85 4A4A 7B98 14BC 2EFF

Subkey fingerprint: BE56 D781 0163 488F C7AE 62AC 3914 0AE2 DD53 792F
$

The access credentials in ~/.pypirc contains the username/password that twine uses for PyPI.

$ cat ~/.pypirc
[distutils]
index-servers =

pypi

[pypi]
username:<XXXXXX>
password:<XXXXXX>
$ twine upload dist/*

4.5.4 Distribute Documentation

Documentation is distributed through readthedocs.org. After a release visit the haka-mqtt readthedocs project, select
“Versions” click on “inactive” versions and make sure that the correct versions are marked as “Active”.

The haka-mqtt project documentation uses PlantUML to draw diagrams and this package is not support out-of-the-
box by readthedocs. The project root directory contains a .readthedocs.yml file to set the build readthedocs
build environment to one that supports PlantUML and bypass the problem.

4.5.5 Increment Version Number

The release number in setup.py has been consumed and should never be used again. Take the time to increment the
number, commit the change, then push the change.

$ vi setup.py
$ vi doc/source/conf.py
$ git commit setup.py
$ git push origin master

52 Chapter 4. Table of Contents

https://haka-mqtt.readthedocs.io/en/latest
https://readthedocs.org/projects/haka-mqtt/
https://pypi.org/project/plantuml/

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

53

Haka MQTT Documentation, Release 0.3.5

54 Chapter 5. Indices and tables

Python Module Index

e
examples.frontend_poll, 26

h
haka_mqtt.clock, 29
haka_mqtt.cycle_iter, 29
haka_mqtt.dns_async, 29
haka_mqtt.dns_sync, 30
haka_mqtt.exception, 32
haka_mqtt.frontends.poll, 40
haka_mqtt.on_str, 32
haka_mqtt.reactor, 32
haka_mqtt.scheduler, 41
haka_mqtt.selector, 42
haka_mqtt.socket_factory, 42

55

Haka MQTT Documentation, Release 0.3.5

56 Python Module Index

Index

A
add() (haka_mqtt.scheduler.Scheduler method), 41
add_done_callback() (haka_mqtt.dns_sync.SynchronousFuture

method), 30
add_read() (haka_mqtt.selector.Selector method), 42
add_time() (haka_mqtt.clock.SettableClock method), 29
add_write() (haka_mqtt.selector.Selector method), 42
address_family (haka_mqtt.frontends.poll.MqttPollClientProperties

attribute), 40
address_family (haka_mqtt.reactor.ReactorProperties at-

tribute), 38
AddressReactorError (class in haka_mqtt.reactor), 32
argparse_endpoint() (in module examples.frontend_poll),

27
AsyncFutureDnsResolver (class in

haka_mqtt.dns_async), 29

B
BlockingMqttClient (class in haka_mqtt.frontends.poll),

40
BlockingSocketFactory (class in

haka_mqtt.socket_factory), 42
BlockingSslSocketFactory (class in

haka_mqtt.socket_factory), 42

C
cancel() (haka_mqtt.dns_sync.SynchronousFuture

method), 31
cancel() (haka_mqtt.scheduler.Deadline method), 41
cancelled() (haka_mqtt.dns_sync.SynchronousFuture

method), 31
clean_session (haka_mqtt.reactor.Reactor attribute), 33
clean_session (haka_mqtt.reactor.ReactorProperties at-

tribute), 38
client_id (haka_mqtt.frontends.poll.MqttPollClientProperties

attribute), 40
client_id (haka_mqtt.reactor.Reactor attribute), 33
client_id (haka_mqtt.reactor.ReactorProperties attribute),

37

ClockScheduler (class in haka_mqtt.scheduler), 41
close() (haka_mqtt.dns_async.AsyncFutureDnsResolver

method), 30
closed() (haka_mqtt.dns_async.AsyncFutureDnsResolver

method), 30
connack (haka_mqtt.reactor.MqttState attribute), 33
connected (haka_mqtt.reactor.MqttState attribute), 33
connected (haka_mqtt.reactor.SocketState attribute), 39
connecting (haka_mqtt.reactor.SocketState attribute), 39
ConnectReactorError (class in haka_mqtt.reactor), 32
create_parser() (in module examples.frontend_poll), 27

D
Deadline (class in haka_mqtt.scheduler), 41
deaf (haka_mqtt.reactor.SocketState attribute), 39
DecodeReactorError (class in haka_mqtt.reactor), 32
del_read() (haka_mqtt.selector.Selector method), 42
del_write() (haka_mqtt.selector.Selector method), 42
done() (haka_mqtt.dns_sync.SynchronousFuture

method), 31
DurationScheduler (class in haka_mqtt.scheduler), 41

E
endpoint (haka_mqtt.reactor.ReactorProperties attribute),

37
errno (haka_mqtt.reactor.SocketReactorError attribute),

39
error (haka_mqtt.reactor.Reactor attribute), 33
error (haka_mqtt.reactor.ReactorState attribute), 38
error (haka_mqtt.reactor.SslReactorError attribute), 39
ExampleMqttClient (class in examples.frontend_poll), 26
examples.frontend_poll (module), 26
exception() (haka_mqtt.dns_sync.SynchronousFuture

method), 31
expect_event() (examples.frontend_poll.ExampleMqttClient

method), 26
expired() (haka_mqtt.scheduler.Deadline method), 41

G
gaierror (haka_mqtt.reactor.AddressReactorError at-

57

Haka MQTT Documentation, Release 0.3.5

tribute), 32
generate_client_id() (in module

haka_mqtt.frontends.poll), 40

H
haka_mqtt.clock (module), 29
haka_mqtt.cycle_iter (module), 29
haka_mqtt.dns_async (module), 29
haka_mqtt.dns_sync (module), 30
haka_mqtt.exception (module), 32
haka_mqtt.frontends.poll (module), 40
haka_mqtt.on_str (module), 32
haka_mqtt.reactor (module), 32
haka_mqtt.scheduler (module), 41
haka_mqtt.selector (module), 42
haka_mqtt.socket_factory (module), 42
handshake (haka_mqtt.reactor.SocketState attribute), 39
HexOnStr (class in haka_mqtt.on_str), 32
host (haka_mqtt.frontends.poll.MqttPollClientProperties

attribute), 40

I
in_flight_packets() (haka_mqtt.reactor.Reactor method),

33
init (haka_mqtt.reactor.ReactorState attribute), 38
instant() (haka_mqtt.scheduler.ClockScheduler method),

41
instant() (haka_mqtt.scheduler.DurationScheduler

method), 41
instant() (haka_mqtt.scheduler.Scheduler method), 41
IntegralCycleIter (class in haka_mqtt.cycle_iter), 29
is_active() (haka_mqtt.reactor.Reactor method), 33

K
keepalive_period (haka_mqtt.frontends.poll.MqttPollClientProperties

attribute), 40
keepalive_period (haka_mqtt.reactor.Reactor attribute),

33
keepalive_period (haka_mqtt.reactor.ReactorProperties

attribute), 37

M
main() (in module examples.frontend_poll), 27
mqtt_state (haka_mqtt.reactor.Reactor attribute), 33
MqttPollClient (class in haka_mqtt.frontends.poll), 40
MqttPollClientProperties (class in

haka_mqtt.frontends.poll), 40
MqttState (class in haka_mqtt.reactor), 32
mute (haka_mqtt.reactor.MqttState attribute), 33
mute (haka_mqtt.reactor.SocketState attribute), 39
MutePeerReactorError (class in haka_mqtt.reactor), 33

N
name_resolution (haka_mqtt.reactor.SocketState at-

tribute), 39
name_resolver (haka_mqtt.reactor.ReactorProperties at-

tribute), 37
next() (haka_mqtt.cycle_iter.IntegralCycleIter method),

29

O
on_connack() (haka_mqtt.reactor.Reactor method), 33
on_connect_fail() (haka_mqtt.reactor.Reactor method),

34
on_disconnect() (haka_mqtt.reactor.Reactor method), 34
on_puback() (haka_mqtt.reactor.Reactor method), 34
on_pubcomp() (haka_mqtt.reactor.Reactor method), 34
on_publish() (haka_mqtt.reactor.Reactor method), 34
on_pubrec() (haka_mqtt.reactor.Reactor method), 34
on_pubrel() (haka_mqtt.reactor.Reactor method), 34
on_suback() (haka_mqtt.reactor.Reactor method), 34
on_unsuback() (haka_mqtt.reactor.Reactor method), 35

P
PacketIdReactorException, 32
password (haka_mqtt.reactor.ReactorProperties attribute),

38
poll() (haka_mqtt.dns_async.AsyncFutureDnsResolver

method), 30
poll() (haka_mqtt.frontends.poll.BlockingMqttClient

method), 40
poll() (haka_mqtt.frontends.poll.MqttPollClient method),

40
poll() (haka_mqtt.scheduler.ClockScheduler method), 41
poll() (haka_mqtt.scheduler.DurationScheduler method),

41
poll_until_event() (exam-

ples.frontend_poll.ExampleMqttClient
method), 26

port (haka_mqtt.frontends.poll.MqttPollClientProperties
attribute), 40

preflight_packets() (haka_mqtt.reactor.Reactor method),
35

ProtocolReactorError (class in haka_mqtt.reactor), 33
publish() (haka_mqtt.reactor.Reactor method), 35

R
Reactor (class in haka_mqtt.reactor), 33
ReactorError (class in haka_mqtt.reactor), 37
ReactorException, 32
ReactorProperties (class in haka_mqtt.reactor), 37
ReactorState (class in haka_mqtt.reactor), 38
read() (haka_mqtt.reactor.Reactor method), 35
read_fd() (haka_mqtt.dns_async.AsyncFutureDnsResolver

method), 30

58 Index

Haka MQTT Documentation, Release 0.3.5

recv_idle_abort_period (haka_mqtt.frontends.poll.MqttPollClientProperties
attribute), 40

recv_idle_abort_period (haka_mqtt.reactor.Reactor at-
tribute), 36

recv_idle_abort_period (haka_mqtt.reactor.ReactorProperties
attribute), 38

recv_idle_ping_period (haka_mqtt.frontends.poll.MqttPollClientProperties
attribute), 40

recv_idle_ping_period (haka_mqtt.reactor.Reactor
attribute), 36

recv_idle_ping_period (haka_mqtt.reactor.ReactorProperties
attribute), 38

RecvTimeoutReactorError (class in haka_mqtt.reactor),
38

remaining() (haka_mqtt.scheduler.Scheduler method), 41
ReprOnStr (class in haka_mqtt.on_str), 32
result (haka_mqtt.reactor.ConnectReactorError attribute),

32
result() (haka_mqtt.dns_sync.SynchronousFuture

method), 31
run() (in module examples.frontend_poll), 27

S
Scheduler (class in haka_mqtt.scheduler), 41
scheduler (haka_mqtt.reactor.ReactorProperties at-

tribute), 37
Selector (class in haka_mqtt.selector), 42
selector (haka_mqtt.reactor.ReactorProperties attribute),

37
send_packet_ids() (haka_mqtt.reactor.Reactor method),

36
set_time() (haka_mqtt.clock.SettableClock method), 29
SettableClock (class in haka_mqtt.clock), 29
sock_state (haka_mqtt.reactor.Reactor attribute), 36
socket_factory (haka_mqtt.reactor.ReactorProperties at-

tribute), 37
SocketFactory (class in haka_mqtt.socket_factory), 42
SocketReactorError (class in haka_mqtt.reactor), 39
SocketState (class in haka_mqtt.reactor), 39
ssl (haka_mqtt.frontends.poll.MqttPollClientProperties

attribute), 40
SslReactorError (class in haka_mqtt.reactor), 39
SslSocketFactory (class in haka_mqtt.socket_factory), 42
start() (haka_mqtt.reactor.Reactor method), 36
started (haka_mqtt.reactor.ReactorState attribute), 38
starting (haka_mqtt.reactor.ReactorState attribute), 38
state (haka_mqtt.reactor.Reactor attribute), 36
stop() (haka_mqtt.reactor.Reactor method), 36
stopped (haka_mqtt.reactor.MqttState attribute), 33
stopped (haka_mqtt.reactor.ReactorState attribute), 38
stopped (haka_mqtt.reactor.SocketState attribute), 39
stopping (haka_mqtt.reactor.ReactorState attribute), 38
subscribe() (haka_mqtt.reactor.Reactor method), 36
SynchronousFuture (class in haka_mqtt.dns_sync), 30

SynchronousFutureDnsResolver (class in
haka_mqtt.dns_sync), 31

SystemClock (class in haka_mqtt.clock), 29

T
terminate() (haka_mqtt.reactor.Reactor method), 36
time() (haka_mqtt.clock.SettableClock method), 29
time() (haka_mqtt.clock.SystemClock method), 29

U
UnexpectedMqttEventError, 27
unsubscribe() (haka_mqtt.reactor.Reactor method), 36
username (haka_mqtt.reactor.ReactorProperties at-

tribute), 38

W
want_read() (haka_mqtt.reactor.Reactor method), 37
want_write() (haka_mqtt.reactor.Reactor method), 37
will (haka_mqtt.reactor.Reactor attribute), 37
write() (haka_mqtt.reactor.Reactor method), 37

Index 59

	Status
	Installation
	Project Infrastructure
	Table of Contents
	User Guide
	API Reference
	Change Log
	Developer Guide
	Distributing haka-mqtt

	Indices and tables
	Python Module Index

